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Letters
Studies on uracils: a facile one-pot synthesis of oxazino[4,5-d]-,
pyrano[2,3-d]-, pyrido[2,3-d]- and pyrimido[4,5-d]pyrimidines

using microwave irradiation in the solid state
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Abstract—N,N-Dimethyl-5-formylbarbituric acid 1 reacts with maleimide 2 and phenyl isocyanate/phenyl isothiocyanate 4 under
microwave-assisted conditions in the solid phase to afford pyrano[2,3-d]pyrimidines 3 and oxazino[4,5-d]pyrimidines 5 in excellent
yields. Under identical conditions, N,N-dimethyl-6-amino-5-formyluracil 6 reacts with 2 and 4 to give pyrido[2,3-d]pyrimidine
derivative 7 and pyrimido[4,5-d]pyrimidines 8 in high yields.
� 2004 Elsevier Ltd. All rights reserved.
Development of new solid phase reactions1 and trans-
ferring solution phase to solid phase reaction are sub-
jects of recent interest in the context of generating
libraries of molecules for the discovery of biologically
active leads and also for the optimization of drug can-
didates. The potential application of microwave tech-
nology in organic synthesis,2 particularly in solid phase
organic reactions is increasing rapidly because of reac-
tion simplicity, less pollution and minimum reaction
times providing rapid access to large libraries of diverse
small molecules.

The importance of oxazines and their annelated sub-
strates3 is well recognized by synthetic as well as bio-
logical chemists. One of the most important examples is
the 3,1-benzoxazine derivative Efavirenz,4 which has
recently been approved as an anti-HIV drug. Analogues
of this ring system such as quinazoline derivative DPC
961 have also been reported as anti-HIV agents.5 Thi-
eno[2,3-d]oxazinones are potent antiviral agents and
Herpes-protease inhibitors.6 Although a number of
compounds with this ring system have been synthesized
with diverse biological activities,7 to our knowledge
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there is no report of oxazine derivatives fused to uracil.
Pyrano[2,3-d]pyrimidines, pyrido[2,3-d]pyrimidines and
pyrimido[4,5-d]pyrimidines represent broad classes of
annelated uracils, which have received considerable
attention over the past years due to their wide range of
biological activities. Compounds with these ring systems
have bronchiodilator,8 vasodilator,8 antiallergic,9 car-
diotonic,10 antihypertensive10a and hepatoprotective10a

activity. Some of them exhibit antimalarial,11 analgesic12

and antifungal13 properties. As such, the synthesis of
these ring systems is well documented14 but the synthetic
methods rely mostly on cyclocondensation and usually
require drastic conditions, long reaction times and
complex synthetic pathways. Wamhoff reported a new
route for the synthesis of some annelated uracils based
on [4+2] cycloaddition,15 but these reactions have some
limitations and are confined to the preparation of pyr-
ido[2,3-d]pyrimidines and quinazolines only. In contin-
uation of our studies and the development of highly
expedient methods for the synthesis of annulated ura-
cils16 of biological importance, we report in this com-
munication a novel microwave-assisted one-pot
synthesis of oxazino[4,5-d]-, pyrano-[2,3-d]-, pyrido[2,3-
d]- and pyrimido[4,5-d]pyrimidines, based on [4+2]
cycloaddition reactions in the solid state, which allows
access to a range of structural variations by modification
of the reacting components.

Our synthetic strategy, reacting N,N-dimethyl-5-formyl-
barbituric acid 1 with maleimide 2 under microwave
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Table 1. Microwave-assisted solid state/thermal reactions

Entry Product MW Reaction time Yield (%) Mp (�C)

Power (%) Temperature (�C) MW (min) Thermal (h) MW Thermal

1 3 80 120 5 5 90 70 229

2 5a 60 60–65 5 5 87 65 181–182

3 5b 60 80–90 7 6 85 60 228–230

4 7 80 120–125 6 5 85 65 266

5 8a 60 100 6 6 84 57 215–217

6 8b 60 100–110 7 6 80 54 241–242
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irradiation (Synthwave 402 Monomode Reactor From
Prolabo) in the solid state, afforded the pyrano[2,3-
d]pyrimidine derivative 3 in excellent yields. Compound
1, which was synthesized by treating N,N-dimethylbar-
bituric acid with the Vilsmeier reagent in refluxing
benzene17 gave, on treatment with an equimolar amount
of maleimide 2 under microwave irradiation at 120 �C
for 5min followed by work-up, compound 319 in 90%
yield. The structure of this compound was confirmed on
the basis of spectroscopic data and elemental analysis.
The 1H NMR spectrum showed the absence of the
aldehyde proton and the presence of one proton at d
8.30 and another at d 3.60. The mass spectrum revealed
a strong molecular ion peak at 339 Mþ. With suitable
conditions established, the microwave-assisted reaction
was extended by utilizing some other active dienophiles
like isocyanates and isothiocyanates with the compound
1. Thus the reaction of N,N-dimethyl-5-formylbarbituric
acid 1 with phenyl isocyanate 4a under microwave-
assisted conditions in the absence of solvent gave the
corresponding oxazino[4,5-d]pyrimidine 5a in very high
yield (Table 1). The structure of the compound was
ascertained from spectroscopic data and elemental
analysis. Under identical conditions, compound 1
reacted with phenyl isothiocyanate 4b to afford the
corresponding thiooxazino[4,5-d]pyrimidine analogue
5b. The reactions were then performed thermally using a
number of solvents, and chloroform was found to be the
most suitable solvent in terms of solubility of the reac-
tants, time required and overall yield of the products.
Our observations with the thermal reactions, using
chloroform as solvent are recorded in Table 1. It is very
interesting to note that elimination of the solvent and
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Scheme 1.
shifting from conventional thermal to microwave heat-
ing reduced the reaction times from hours to minutes
with improved yields besides simplifying the work-up
procedure (Scheme 1).

In order to explore the synthetic utility of the process,
we have investigated the reactivity pattern of 6-amino-
1,3-dimethyl-5-formyluracil 618 with maleimide 2 under
microwave-assisted conditions in the solid state. This
reaction was found to proceed in a smooth manner
providing pyrido[2,3-d]pyrimidine 7 in excellent yield.
The structure of the compound was confirmed from
spectroscopic data and elemental analysis. The 1H
NMR spectrum showed the characteristic signal at d
8.25 for one proton and absence of an aldehydic proton.
The mass spectrum revealed a molecular ion peak at 336
Mþ. In a similar way, treatment of N,N-dimethyl-6-
amino-5-formyluracil 6 with phenyl isocyanate 4a and
phenyl isothiocyanate 4b under microwave-assisted
conditions afforded pyrimido[4,5-d]pyrimidines 8a and
8b in very good yields (Table 1).

The formation of the products can be explained by the
mechanism outlined in Scheme 2. Potentially, the N,N-
dimethyl-5-formylbarbituric acid 1 and N,N-dimethyl-6-
amino-5-formyluracil 6, which can also exist as 1,4-diene
following tautomeric shifts, first react with the dieno-
phile maleimide 2 to give the intermediates [A]. The
intermediates [A] then lose water or water followed by
oxidation to afford the products 3 and 7.

Further studies of the reaction are in progress. In con-
clusion, we have demonstrated a novel microwave-
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assisted solid state synthesis of a number of annelated
uracils of biological significance in excellent yields.
Furthermore, the results delineated above have dem-
onstrated that microwave-assisted reactions in the solid
state can replace classical methods, allowing easy and
rapid access to novel heterocycles of biological signifi-
cance and reducing the reaction times from hours to
minutes with improved yields.
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8a. Mp 215–217 �C 1H NMR (300MHz, CDCl3) d 3.05 (s,
3H), 3.15 (s, 3H), 6.90–7.15 (m, 5H), 8.20 (s, 1H). IR 1710,
1695 cm�1. MS 284 Mþ. CHN analysis (calcd %) C, 59.15;
H, 4.22; N, 19.71; C14H12N4O3 (found %) C, 59.10; H,
4.15; N, 19.66.
8b. Mp 241–242 �C 1H NMR (300MHz, CDCl3) d 3.05 (s,
3H), 3.15 (s, 3H), 6.90–7.15 (m, 5H), 8.15 (s, 1H). IR 1710,
1695 cm�1. MS 300 Mþ. CHN analysis (calcd %) C, 56.00;
H, 4.00; N, 18.66; C14H12N4O2S (found %) C, 55.95; H,
3.95; N, 18.61.
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